Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0293616, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527091

RESUMO

To properly control the network of the power system and ensure its protection, Phasor measurement units (PMUs) must be used to monitor the network's operation. PMUs can provide synchronized real-time measurements. These measurements can be used for state estimation, fault detection and diagnosis, and other grid control applications. Conventional state estimation methods use weighting factors to balance the different types of measurements, and zero injection measurements can lead to large weighting factors that can introduce computational errors. The offered methods are designed to ensure that these zero injection criteria can be strictly satisfied while calculating the voltage profile and observability of the various distribution networks without sacrificing computing efficiency. The proposed method's viability is assessed using standard IEEE distribution networks. MATLAB coding is used to simulate the case analyses. Overall, the study provides a valuable contribution to the field of power distribution system monitoring and control by simplifying the process of determining the optimal locations for PMUs in a distribution network and assessing the impact of ZI buses on the voltage profile of the system.


Assuntos
Sistemas Computacionais , Tecnologia , Injeções
2.
PLoS One ; 18(11): e0293278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033037

RESUMO

Due to their simplicity, cheapness, and ease of maintenance, induction motors (IMs) are the most widely used motors in the industry. However, if they are not properly controlled, the load torque and motor speed will fluctuate in an unsatisfactory fashion. To effectively control the load torque and speed of these IMs, it is necessary to use specialized drives. The entire system (IMs + Drives) will experience uncertainty, nonlinearities, and disruptions, which calls for an outstanding performance control structure. The sensorless sliding mode predictive torque control (SSM-PTC) for both AC-DC converter and DC-AC inverter, which are utilized for feeding the IM, is investigated in this work. The AC-DC converter is controlled using the SSM-PTC method in order to follow the DC-link reference voltage throughout any changes in the operating point of the IM. While the DC-AC inverter is controlled using a sensorless predictive power control (SPPC). Within a unity power factor, this SPPC regulates the reactive power flow between the motor and the supply to account for the undesirable harmonic components of the grid current. In addition, an experimental performance improvement of SSM-PTC of IM supplied by a 5-leg AC-DC-AC power converter using extended Kalman filter (EKF) without weighting factor (WF) is also studied in this work. Design and implantation of the suggested control systems are performed using a dSPACE 1104 card. The experimental results of the proposed converter control demonstrate that the suggested approach effectively regulated the DC link, reducing load torque and speed fluctuations. In the context of inverter control, a prompt active power response yields a motor current waveform that resembles a sinusoidal pattern, exhibiting minimal levels of harmonic distortion.


Assuntos
Sistemas Computacionais , Fontes de Energia Elétrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...